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Abstract

The Cassini mission will explore the Saturnian system In much great-
er depth than was possible by the Voyager fl yby missions. The space-
craft is comprised of a'litan pmbc and a Saturn orbiter.

The Cassim Attitude and Articulation Control Subsystem (AACS) is
responstble for determining and cent rolling the spacecraft at titude in-
cluding instrument pointing, antenna pointing, and thrust vector
pointing during velocity change maneuvers. The 12 year mission life,
long round- trip light time, and extended periods of coast without
continuous ground control drive the AACS flight software design in
the directions of autonomy, fault tolerance, and modularity to acco-
modatc planned upgrades in flight.

Past experience on JPL, planetary programs indicated the need for a
fresh approach to specifying, and developing AACS flight software.
An object oriented app1 each offers many attrac.live advantages over
more conventional methodologies. 1'hese include an improved mod -
uvlarity in both code and data that simplifies program structure, an em-
phasis on earhier specification and architectural design of software
modules, and the ability to carry the design paradigm more directly
into flight software implementation.

Recognizing these advantages, the Cassini AACS team has coopcra-
tively tailored a successful object oriented methodology that aids the
development of requirements, fosters the earl y consideration of prac-
tical implementation issues, and provides a convenient, self- con-
taincd vehicle for the delivery of algorithms to flight software.

The Cassimi AACS Flight Software is depicted in increasing levels of
detail using a Context Iagram, Architecture Diagrams (i.e., Depen-
dency Diagrams), an object Diagram for each object, and a Statc-
chart (i.e., State Transition Diagram) for each object. The detail con-
tained in the diagrams is enhanced and refined during the
Requirements and Design Phascs of both Subsystem and Software
Development. Examples of al 1 the diagrams as well as the criteria for
object selection, the advantages of statecharts, and the case of modi -
fying the design to accomodate changes in scope ai ¢ described.

INTRODUCTION

in 1989, NASA initiated the CRAF and Cassini missions. These were to have been the first in ascries
of interplanctary missions for the Mariner M ark 11 program. CRAF was a comet rendezvous mission;
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Cassini was targeted for an orbital tour of Saturn; and both were planned to encounter an astcroid
along the way. 1.ater missions in the Mariner Mark 1 | serics were to be of similar scope, with agoal
to study scveral other objectives in the solar system much more closely than any previous explora-
tion.

The CRAF and Casstinispaccceraft were very large. Both missions imposed huge propulsion de-
mands; each carried numerous instruments; and many types of experiments were planned. Scientifi-
cally, the two missions were strikingly different, with little in common between their payloads. Nev-
crtheless, to complement their scientific prowess, the Mariner Mark 11 spacecraft were also to share
many high performance design features, with most of the core engincering subsystems identical, o
easily configurable in a modular way. This made the task doubly complex - to meet two unprece-
dented sets of demands, but in a common design (with room to accommodate needs of future mis-
sions in the bargain).

At the core of this complexity was the flight software - that frec- flowing but notoriously unwieldy
well spring of functionality. With this daunting situation at hand, and knowing the extraordinary ef-
for( that had been required to deliver capable and reliable flight software on prior, much simpler in-
terplanetary missions, the guidance and control team made an carl y decision to meet this new chal-
lenge with a new approach.

Afterintense but fruitful debate, aformal approach was launched in mid 1990 which has guided the
softwarc design through preliminary development. This approach uses, as its fundamental basis, ob-
ject oriented methods and statccharts (Ref. 1), but also involves the extension and integration of
these methodol ogies outside the software domain among other areas within guidance and control.

We are happy to 1eport that our experience with this approach has provento beiremarkably effect ive.
M oreover, our ability to regroup withrelative case through the bounding evolut ion of the program
to itscurrent state is owed in some measure to the success of this approach. This paper describes the
motive for our method, the nature of its essential constituents, and its application from initial concep-
ti on through subsequent evolution of the project. 1o set the stage wc begin with a brief descript ion
of the CRAY and Cassini missions and spacecraft as they were originally concelved when this ap-
proach was developed.

THE CASSINI CHALLENGE

The Cassini mission will explore the Saturnian system in much greater detail than was possible by
the Voyager missions. Both Voyager 1 and Voyager 2 flew by Saturn in the course of their tour of
the outer solar system, but never went into orbit. The Cassini mission plan calls for four years of
intensive study of the Saturnian system following Saturn orbitinsertion.

Mission Background

The Cassini Flight Software approach has ahead y been tested by programmat ic and spacecraft de-
sign changes. Both the CR AF and Cassim spacecraft needed the capabilit y for full three- degree- of-

freedom orientation control to support antenna pointing and propulsive mancuvers, and to protect
certain spacecraft and instrument surfaces from excessive direct solar radiation. Both spacecraft.
boasted two- degree- of- freedom articulated 1 ligh Precision Scan Platforms (1HPSPs). CRAF (sec
Iig. 1) had an additional limited- motion, low precision, one- degree- of- freedom scan platform;
while Cassini (see ¥ig. 2) had alow- precision, one- degree- of- freecdom probe relay antenna and a
cent inuous - rotation turntable. The imaging Subsystem (1SS) cameras on the HPSP were time-
shared between imaging science uses and star detection and location to determine the 111'S1’- and
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thereby the spaceccraft- attitude. The CRAV/Cassini AACS software architecture discussed below
accommodated these and other software tasks in a structure that- with the exception of turntable
control- was identical for CRAF and Cassini.

in January, 1992, NASA's final budget did not include CRAL, and the same budgctary pressures that
eliminated CRAL were challenging Cassini’s survival in its then- current fem. Afterreexamination
of mission goals and requirements and spacecraft options, a simplified redesigned Cassini spacccrafi
was proposed which could be delivered at lower cost and cost 11 sk than the carlier baseline. T'he
redesigned Cassini has since been adopted as the Cassini baseline and will be discussed inmore detail
below.

Mission Objectives

The spacecraft is comprised of a probe which will take atmospheric measurements during its descent
to the surface of 11tan, and a Saturn orbiter which will invest igate the satellites, rings, atmosphere,
and magnctosphere of Saturn over the course of 4 yearn and 60 Saturn orbits. During this mission,
Titan will come in for particular scrutiny with 33 flybys for imaging, RADAR, and radio science.
observations.

The control software under discussion is responsible for determining and control ling the Cassini
Spacccraft attitude at all times in the mission including camera and instrument pointing, probe point-

ing a probe release, antenna pointing for communicant ions, probe data relay, RADAR, and radio sci -

ence, and thrust vector pointing during velocity change mancuvers. The 12 year mission life, long
round- trip light time, and extended periods of coast without continuous ground control drive the
AACS flight software design in the directions of autonomy, fault tolerance, and modularity to ac-
commodatc planned upgrades in flight.

CASSINI SPACECRAFT

1 ‘g. 3 shows the redesigned Cassini spacecraft. The most visible changes from the carlier Cassim
design arc that the platforms were removed and all instruments and antennas became body fixed.
"This meant that all instrument, sensor, or antenna pointing would need to be accomplished by space-
craftrecorientation. Since spacecraft reorientation is relatively slow, it was no longer feasible to time-
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share the 1SS cameras between imaging and AACS. Instead, a dedicated star tracker was added
which ]s capable of continuous star viewing.

As before, Cassinicarries the large (3 m diameter) 1 luygens Probe for gection into the Titan Atmo-
sphere.

Cassini now features aremote sensing pallet which includes all precision optical instruments. The
optical experiments arc co- boresighted so that aiming one of thcm points them all at the same target.
These instruments all have radiators mounted perpendicular to their boresights to cool their detec-
tors. ‘I’ he radiators must be kept out of direct sunlight at al times of the mission for the instruments
to function propcily. ‘1" he Stellar Reference Unit (SRU) used for star tracking is also on the pallet.
Itsboresight is pointed in the same direction as the science instrument radiators so that the SRU field
of view will never be obstructed by either the sun or the optical instrument’s target.

Other fields and particles instruments arc mounted elsewhere on the spacecraft and require differ ent
spacecraft at tit udes and motions to collect their data, Onc group of experiments requires the space-
c1aft toroll about the axis of the High Gain Antenna (1 IGA) for up to 8 hours so that the experiments
can take mcasurcments in all directions.

The 4 mwide} ligh Gain Antennascrves many purposcs. It is pointed at the Earth for communica-
tions between Cassini and the mission operations, The 11GA will track the motion of the probc as
it enters ‘ 1itan’s atmosphere and receive data beamed back from the probe for later ret ransmission
to the 1 ‘arth. Itserves as aradar transmit ter and receiver for ‘I'it an altimetry and mapping experi -
ments. Iinally, the HGA may be used for Radio science experiments ranging from gravity wave
detection to atmospheric or ring particle studies during Farth occultation by Saturn, its rings, or Ti-
tan.
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in order to gencrate adequate power at over 9 AU from the sun, Cassiniis powered by threc Radioiso-
t opc '1*hem oclect ric Generators .

The propulsion system offers a (redundant) gimbaled bipropelient main engine for high efficiency
during over 100 large propulsive maneuvers and small fixed monopropclient thrusters for precise
smallpropulsive maneuvers and three axis attitude control. These smallthrusters and the equipment
supporting thcm are collectively referred to as the reaction control system (RCS).

Both the Command and ata Subsystem (C1>S) and the Attitude and Articulation Control Subsys-
tcm arc built around a pair of 1750A microprocessors programmed in Ada. The availability of a
language like Ada for the flight computerraises the desirability of choosing an object- oriented soft-
ware development approach. AACS will be discussed in more detail in the following section,

Commands relating to AACS are inserled into a command scquence, received at the 1 1GA (or one
of two low gain antennas), dccoded, and sent to CDS. CDS then installs and activates the sequence
and sends commands to all subsystems- - including AACS- at the time indicated in the sequence.
Commands to AACS are sent out over al553B busto AACS.

‘Thermal cent rol of the spacecraft is managed by designing certain sides of the spacecraft to accom-
modate full solar input a 0.61 AU from the sun and other sides (such as the side containing the instru-
ment radiators) which are designed to never see the sun. When closc to the sun, the 11GA isgenerally
sun- pointed. All turns off sun point at this phase of the mission are brief and in a direction so that
thesun ison the probe side of the spacecraft. ‘I 'hermal constraints form the basis of some of the re-
qui rements for fault protection software speed of response.

ATTITUDE ANI) ARTICULATION CONTROL, SUBSYSTEM
Functions

The Attitude and Articulation Control Subsystem is 1esponsible for attitude determination, attitude
cent rol, trajectory change m ancuvers, fault protect ion, spacecraft att i t ude broadcast, and telemetry.

¢ Attitude Determination: determination of the sun location using the Sun
Sensor; star identification using the Stellar Reference Unit (SRU); atti-
tude determination using identified stare, and attitude propagation between
star updates using a dynamic model augmented at times by the Inertia)
Reference Unit (IRU).

* Attitude Control: Control of the spacecraft attitude using thrusters for
thermal control, HHGA pointing, probe pointing, and small trajectory
change mancuvers; control of the spacecraft using engine gimbal actua-
tors augmented by roll cont rol thrusters during large (main engine) t rajcc-
tory change mancuvers; control of the spacecrafl attitude using reaction
wheels (RWAs) during most of the Saturn encounter period.

¢ ‘Trajectory Change mancuver magnitude control: bum termination based
on timers for small mancuvers, based on an accelerometer backed up by a
timer for large mancuvers.

« Jault Protection: Failure detection, location and 1ccovery for failures of
attitude control and propulsion assemblics.

* Attitude Broadcast: The spacecraft attitude and angular velocity with re-
spect to the Inertial J2000 coordinates ystem is broadeast to a | processors
on the spacecraft that may need to know it
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‘Telemetry: Telemetry is designed to allow ground reconstruction of
spacecraft attitude, AACS assembly health, and nominal and fault related
AACS activities.

Cent rol 1 .oops
AACS is functionally represented by Fig. 4. This figure shows that the AACS Flight Compute]
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(AFC) communicates with CDS and a large number of AACS peripheralsensors and actuators. ‘I'he
sensors include aredundant Inertial Reference Unit |, Stellar Reference Unit, and Sun Sensor, and
anon- redundant Accelerometer. Actuators include redundant reaction wheel assemblies and kn-
gine Gimbal Actuators. The AACS also controls Propulsion Subsystem valves, thrusters, engines,
and hcaters. Except for the SRU, al communication between the AFC and the AACS peripherals
arc viathe AACS bus. The SRU sends its voluminous CCD image data to the AFC viaadcdicated
pixel interface.

Figure 4.1 captures the basic contr 0] loops. Note that the “blocks’ discussed here will form the basis
for some of the objects sclected below.

in the attitude control loop, commands from CDS drive an attitude commander which determines
the instantaneous attitude, angular velocity (attitude rate), and angular acceleration commands.
Data from the sun sensor and the IR is combined to generate an attitude and attitude rate estimate
in the attitude determination block. This is passed to the attitude control block which compares the
commanded and estimated attitude and attitude rate, notes any commanded angular acceleration,
and, depending on cent rol mode, generates commands for the appropriate combinat ion of thrusters,
reaction wheels, or EGAs.
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In the velocity change control loop, atimer is used to terminate the propulsive mancuver when the
desired velocity change has been achieved. For main engine maneuvers, the timer is augmented by
an accelerometer which measures one component of the velocity change directly.

AACS Modes
Another view of the AACS is provided by tig. 5, “AACS Klight Software Modes’. This figure

Prime Resel,p
C .,
Launch '4-_ .
S ' - Backup
c ‘ CDS Indicates / ¢
. Upper Stage e
Prepare Separation o
[ to Control —- Detumble \ o CF
Detumble
Detumble complette, [ Sun SearCh
1I;|‘|:|ert complete, 42000 - — - " _.__dl
Allitude Control o Ju.’:OSO at:tude + Sun acquire
Disabled [ anuon:lv: unkriown R _
' ' l Sun Hold
\ | Home Base | B o
¢ \ 3-axis
Control Knowledge J 2000 attitude
Knowrn
| RCS Control | [ sru +IRU .
v bl yo b
C.F C.F
| RWA Control | SRU Only
'}) Default State

Y

Complete Complete Complete
s z I i N C: Command
RCS AV Main Engine RWA Momen-
Control AV Control tum Dump F: Fault Response

Fig. 5 AACS Flight Software Modes

shows the major subsystem modes. The Flight Software in an AFC will be in one and only onc mode
at any onc time. No more than onc AFC is alowed to be prime at atime, so if onc AFCisin the
I’rime supcrmode, the other AFC is either off or in Backup mode. The figure should be read as fol -
lows: The symbol with an arrow drawn from a dot denotes the default state or substate. When a
stateis entered without a positive indication of which substate to stait at, the 'S W starts at the default
state. The letter Crefers to a commanded state transition; AACS receives these commands from
CDS. the letter F indicates a transition caused by an internal AACS fault response. If a stateis di-
vided by a vertica line (see Home Base), that means that there are two concurrent machines and the
total state is made up of the combination of the active substate on each half of the vertical line. The
modes arc discussed below by considering a couple of scenarios which exercise most of the transi-

tions shown.
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Before Jaunch both AFCs are powered, and they both come up in the Backup mode. One AFC is

then commanded to become Prime in the L.aunch mode. in the L.aunch mode, some hardware can
be powered for self protection against the launch environment, but no spacecraft cent rol is attempted
and it is not possible to fire any thrusters or main engines. Following burnout of the uppcr stage,
but before upper stage jettison, AACS is commanded into Prepare to Control mode. Here the propul-
sion subs ystem can be vented and valves opened and closed asnecessary to bercady to f ire thrusters.
in addition, the Attitude determination function isinitiated using the sun sensor and 1R .

As soon as AACS reccives an indication from CDS that the upper stage has been jettisoned, it transi -
tions to Detumble mode. In this mode, the only objective is to achieve a target spat.eclaft rate closc
to zero. At this point, the inertial (J2000) attitude isunknown and a transition is made to sun search
mode. in the nominal case, the sun is centered in the sun sensor FOV at upper stage jett i son, so the
spacecraft has enough information to give deterministic commands which will turn the sun scnsor
back to dircctly reacquire the sun without the need for afull sky scarch.1f the sun location were
completely unknown, such as after an attitude knowledge fault, a full sky search would be initialed
that would be guaranteed to find the sun within a predetermined amount of time.

Once the sun is acquired or reacquired, a transition is made to sun hold mode which keeps the sun
scnsor pointed at the sun and keeps the driftrate about the sun line below a certain allowable value.

At alater time, the SRU will be turned on, checked out, and the software will identify the stars in
its field of view. This will allow afull 3- axis determination of the spacecraft attitude with respect
to the J2000 inertial coordinate system.

At thistime, the software will make its first transition into the 1 Jomc Basc mode. Fxcept for brief
planned (and possibly unplanned fault response) excursions out of Hlome Base, the softwarc will
spend the rest of the mission in this mode.

} Tome Base has concurrent Control and Knowledge substates. That is, whenever the mode is 1 lomc
Base, there will be both a Control and a Knowledge submode. The Control submode will be RCS
or RWA cent ml, depending on which actuator is used to control the spacecraft. 1‘or Knowledge, the
SRU will always be used, but the distinction between the submodes depends on whether the IRU
is also used to augment the SRU in attitude propagation.

The Probe Release scenario starts with the spacecraft in Home Base mode in a “Cruise” state defined
by RCS Control and SRU - only Knowledge. The IRU is needed for Pr obc release, so a mode switch
to SRU -31RU will be commanded.

Once the IR has warmed up and other preparations have been made, the AACS is commanded into
Attitude Control Disabled mode a few seconds before probe release. This isto avoid damaging the
probe with combustion products during its departure from the spacecraft, Att itude Control Disabled
isatimed mode, with the time- out t imc as a variable parameter. Hor Probe release, the timer will
be set to expire afew seconds after probe release.

At thist imc, the spacecraft will execute a detumble maneuver, and, given the large kick the probe
gives the spacecraft, it will take many minutes to bring the spacecraft angular velocity back close
to zcro.

Since the IRU ison, AACS never looses track of the spacecraft attitude, so on completion of the

detumble, transition is made directl y back to} lomc Base, using the default substates of RCS Control
and SRU + 1R U.
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With this overview of the AACS functionalit y providing some insight into the diverse and complex
requirements placed on the AACS Flight Software, let’s turnto how wc went about selecting the
methodolog y for flight soft ware devel opment.

SELECTING A METHODOIL.OGY

1 lad there been strong support for a particular methodology within the guidance and control team
at the inception of the project, little debate would have ensued over the approach to be taken in this
task. on the contrary, despite past cfforts with various methodologies, the general sense initially
scemed to be one of unenthusiastic resignat ion to adopting the recentl y used methods of another pro-
gram.

These methods had proven useful, but unsatisfying, with much of the effort driven only by adesire
to “do the job right” by following the prescriptions of the method. As a consequence, most partici -
pants ncver took full ownership of the approach - particularly those whose close contact with the
soft ware development effort was by circumstance instead of desire: control analysis, tracking, sys-
tem design, integration, fault protection, testing, and so on. This was the statc of advocacy going
in to the planning process.

"I'his preponderance of apathy must be honest] y accounted, however, as an unsurprising consequence
of the teams composition at that time. “I’ he conscious cffort to tackle this problem at threadiest stages
of the project and to enlist everyone with a peripheral role in soft ware devel opment resulted in ateam
with software specialists decidedly in the minority. Finding an approach that would engage this
group to the point whew all could work in awell coordinated manncr was essential.

These arcas had all certainly worked together on past programs, but history had taught a number of
hard won lessons. It was gener d practice, for example, to serialize many processes. S ystem design-
crs would put together the basic architecture and requirements. Analysts would refine the design and
then produce the appropriate algorithms to bring about the desied behavior. Software engincers
would then mold these assorted algorithms into code - not infrequently with a fair amount of distor-

tion. At some time, usually too late in the progression, a fault protection design would be wedged
into place, and the software would then, final] y, be ready for integration with the 1est of the system.

Despite afair amount of obvious recursion in the process, each of these stages would be scrutinized
carefully, and planners would come to the “logical” conclusion that this serial order was inevitable.
Onc need only look at the tools of the trade to see, for example, that the analysts equations and the
programmers code were incommensurate! (e.g., different development and test environments, dif-
ferent languages.) As a consequence, algorithms often evidenced little consideration for their ulti-
mate form when they were delivered for coding.

Finding away to break this serialization was a major issue. It was not enough that the software engi-
neers issue guideli nes, or watch over shoulders to prepare themselves for the i nputs they would 1e¢-
ccive. 1" he approach selected had to be one in which interactions among software components was
clear and explicit from the beginning, and in which algorithms that are typical of guidance and con-
trol applications could find natural expression. This led to a number of ideas that eventually took
formin the sclected approach.

Foremost is the concept of interconnccted state machines. Thesc easily capture both the sequent ia
control constructs of the mode logic, configuration control, and other discrete aspects of the software
design, as well as the state dynamics of a control law or an estimator, Both fit nicely into a common
framework which the economy of statechart representation makes simple to manipulate and under-
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stand. one finds in the state diagrams a common vocabulary that permits the software design to be-
come, not just the recipicent of the development ideas, but also a capable expression of them. Asa
result, wc now have many practitioners of this approach outside the software team who find this to
be apowerful tool in their work, even at early conceptual stages.

State machines carry with them the notion of strong association among a collection of data. Advanc-
ing the state of the machine is a well defined concept in which allowed transitions are carefully and
explicitly dclincated, and in which, idedly, the internal processes of state evolution are hidden.
These notions also describe the basic tenets of object oriented methodolog y which has become a
dominant force in the software world in recent years. Although Ada (the language chosen for this
work) only weakly supports software objects, this approach nevertheless fits nicely with the para-
digms of the language.

Allogether, the blending of all these ideas seems amost ideally suited to guidance and control from
concept ion through implementation. There appears to us to be no other approach as capable of span-
ning this range of the development cycle.

The explicit nature of interaction among state machines that is cncoul’ aged by this method addresses
another weakness that has been apparent in past programs and that also is not approached so directly
by most other methods. For example, typical practice in the past has often been to communicate
among, soft ware modules via common pools of data. ‘1 “hisis a passive form of int tract ion whereby
activiticsin onc arca are affected by another only by an overt act of the affected area to determine
whether a change has occurred in the shared data.

With effort, shared data can be manipulated to model amore direct interaction, but when several
areas react to common data or contribute to common data, there are no ready means of synchroniza-
tion among thcm other than the exercise of great caution, A large amount of time is spent with such
an approach coordinating al of these interactions, particulatly the unintended ones which inevitably
and craftily creep in, The great fear is that such interactions may go undiscovered.

Whileit is possible, with alittle willfulness, to duplicate these problems with objects, the notion of
event- driven actions as the natural expression of an object’s behavior tends todissuade more passive
implementations. Yvent- driven interactions are not only explicit, but also amenable to mole direct
synchronization.In considering the resulting nctwork of control that becomes apparent with this ap-
proach, apoor partitioning of funct ions among objects can be i dent ified and corrected.

For example, we have used a clear hierarchy among objects which directs control predominantl y
downward to promote a manageable structure. 1.ateral actions are limited, and upward actions are
strictly one- to- one actions without the attendant problems described above.

1 n cent rast to the level of control over interactions afforded by most other methods, the object ori-
cnted approach has clear advantages. Given this and the other factors cited above, the motives for
pursuing this approach were clcar. It iemained onl y to adopt aformal 1implementat ion of this method.
'To do that, wc built a prototype.

Wc conducted a Methodology Prototype with the AACS groups mentioned above participating. The
goal of the prototype was to work asfar as possible through the process, resolving issues as they
arosc. The result was a groundwork for the Object Oriented approach eventual | y adopted and agree-
mcnts on the form and types of deli verables to the flight soft ware devel opment process.

AN OBJECT ORIENTED APPROACH

An object is a set of data and any operations which act on that data. Object boundaries are chosen
to maximize the cohesion within a given object (make it as indcpendent as feasible) and minimize
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the coupling between objects (asfew connections as feasible both in number and frequency). Data
within an object may only be changed by operations within the object (there is no common arca
where data is manipulated by more than onc object). Such are the basic tenets of an Object Oriented
approach.

The approach presented in the following sections was based on the work of David 1 larel (Ref. 1),
Sally Shlaer and Steven Mcllor (Ref. 2.), and Don Firesmith (Ref. 3), but is unique to JPI. Cassini
AA(3 Flight Software. During the Mcthodology Prototype, wc defined and refined how to usc the
various represent at ions and development techniques to suit our needs. Wc f urther refined the process
during the development of a second protot ypc where we produced an act ual work ing model by going
through all the steps in our development process as portrayed in Fig. 6 and using the software devel -
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Fig. 6

opment tools we had sclected for the project.

It is important to note that, although the complexity of the software isvery high, thisis afairly small
software project in terms of the lines of executable code (estimated at | cssthan 10,000). Aswill be
seen, wc have identified just 30 objects and found it unnccessary to usc concepts like classes and
inheritance. We could have used classes in the definition of the 1 lardware Manager objects, but wc
found each to be sufficiently unique and the number to be so small that defining each separately bet-
ter suited our process. This isespecially true since, asis discussed later, wc identified the low level
objects first, then identified the higher level objects in the architectural hicrarchy.
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'The requirements placed on the Fhght Software were deseribed and illustrated in previous sections.
The process of performing requirements analysis and architectural design actually began with the
creation of aContext Diagram. The Cassimi AACS Flight Software context is depicted infig. 7. A
smplified view of the Flight Software is that inputs from the spacecraftsensors are used to compare
desired attitude to estimated attitude and corrections are made by outputting to the actuators.

Ascan be seen inkig. 7, the Flight Software has five primary interfaces:
1. The 1750A Computer and its operating System.
2.'The Command and Data Subsystem (CDS) via the CDS Bus.
3. The Stellar Reference Unit (SRU) via the Pixel Interface and the AACS

Bus.

4. Other AACS hardware via the AACS Bus including:
a. The Sun Sensors - Sun Sensor Electronics (SSI)
b. The Accelerometer - Accelerometer Electronics (ACCE)

C.
d.
c.

The Gyros - Inertial Reference Unit (JRU)
The Thrusters - Vave Drive Electi onics (VDE)
“I"he Engine Gimbals - Engine Gimba Assembly (EGA)

f. The Reaction Wheels - Reaction Wheel Assembly (RWA)
5. AACS Support Equipment (SE), for testing, via the Direct Access Unit

(DAU) which is disabled in flight.

CASSINTAACS FEIG T SOFTWARE CONTEXT DIAGRAM

17504
ONM-HATING SYSTEM

AACS
FLIUHI SOFTWARE

CRAF/CASSINI  AACS FLIGHT SOFTWARE CONTEXTDIAGRAM

= 1750A
AN 041 KATINGSYSTEM

r—-

A w% e B

ENUINLFRING L BCIEMKY PIXE
BN My INTERFACT
4

e | (] oo ] B
LI 1 ]

Fig. T

Fig. 8

Fig. 7 isaclassical Software Context Diagram showing the software as abubble, lines and arrows
indicating data flow and boxes as terminators (external interfaces). We have taken the drawing a step
further to show the next level of interfaces beyond the buses. This proves very useful since each of
t hese interfaces (as well as the buses themselves) need to berepresented in the soft ware. 'l “ he contents
mside the heavy dashed linc arc expanded in the next level diagram.

Fig.8 depicts the software context prior to the deletion of CRAY and the Cassinitedesign. The
shaded boxes were deleted and the Cameras were replaced by the SRU for Star T lacking. Accon~o-
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dating these changes in the software design was straightforward and relatively painless because of
the object Oriented approach as can be seen by comparing the “I1S"t' WAS” Context and Architec-
ture Diagrams.

Selection of Objects

After preparing the context diagram based on the subsystemrequirements and subs ystem hardwarce
architecture, subsystem Software Requirements Analysis and Architecture Design normally pro-
cceds by first creating astrawman architecture of candidate objects, In our case, much of the control

software architecture was decided on during the Mcthodology Prototype. That design was extrapo-
lated to the design of the Flight Software by the Control Analysts and isreficctied inthel.evel 1 Ar-
chitecture Diagram. in parallcl, however, wc were doing a Context Diagram and brainstorming the
objects nccded for the 1.evel O Architecture Diagram. The object selection techniques described be-
low were derived from the work of 1Don Firesmith and were considered for our approach. n the fina

analysis, wc used four of the six techniques.

1. Terminator on a Context Diagram - each box on the Context Diagram be-
came an object. Software units arc almost aways required to service each
of the external interfaces. (Second oldest approach according to Ref. 3).

2. Abbotts’ Noun Approach - look for nouns in the software requirements to
consider as objects (e.g., The Flight Software shall use Sun Sensors for
Attitude Estimation.) . in the example, both underlined nouns were con-
verted to objects, but this technique was actually used to refinc the archi -
tecture later in the process after software requirements were more mature.
(In the rcal world, software requirements don’'t just fallfrom above, but

must be laboriously derived in parallel with the architecture development).
oldest technique according to Ref. 3.

3. Data Store on a Data Flow Diagram - processes which act on the data in a
store are grouped with the store to become an object. We have not used
data flow diagrams; therefore, this approach was not used.

4.  Entity on an Entity Relationship Diagram (or nodes on a Semantic Net) -
examples of each type of diagram arc provided in Figs, 9 and 10, the simi-
larity to Context Diagrams is apparent. Wc opted not to usc either of these
diagrams and, therefore, didnt usc this technique.

5. Umt of Work - decomposing the software based on task assignments, Sev-
cral objects were sclected based on the convenient assignment of tasks
both to the Control Analysts and to the Software Engineers. T'his tech-
nique can simplify and minimize both the human and the software inter-
faces.

6. Object Abstraction - is essentially away of thinking in object oriented
terms and requires a mind set (or paradigm) shift. After working with ob-
Jects for atime (about six months) and thinking in terms of object size,
minimizing coupling, and maximizing cohesion, onc begins to recognize
obvious object candidates without using the other techniques. However,
this technique is not clearly defined and is, thercfore, not onc used by be-
gmners.
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Grouping and Decomposing Objects

Paris of the Object Abstraction approach discussed above are the Classification Diagrams and Com-
position Diagrams (see examplesin Figs.11 and 12). We used the idea of (;ompositc’ objects, objects

| GENERICTRAFFICSIGNALS | [ stANDARDSIGNATS

[rrsic sianais] [ |
}‘““CSIGNMS\A [ RepLiGHT] | YELLOW LIGHT| | GREEN1IGHT |
. — —

[ STANDARDSIGNALS| [ TURNSIGNATS | Fig. 12 Composition Diagram

Fig.11 Classification Diagram

compose« of several, more primitive objects, to enable diagraming our software architecture in
increasing levels of detail and complexity. We didn’t usc Composition Diagrams because our soft-
warc architecture is not that complex, there are only two levels of diagrams, and the expansi on of
composite objects to primitive objects is relatively obvious. We could have used classes of objects
for some of the hardware (e.g., thrusters, but wc arc actually interfacing to sets of clectronics which
control al the thrusters and it made more sense. to have the object represent the sets of elect ronics).

Flight Software Architecture

Possibly the most useful way to present the methods we used for devel oping the software architec-
ture, isto walk through an Architecture Diagram and discuss the salient points. Fig.13 is a portraya

of our highest level (1 cvel O) of software architecture. Fig.14 isaview of the architecture prior to

deletion of CRAY and Cassiniredesi gn. Rounded rectangles represent objects. The square rectangle
represents an external interface (or t erminat or). The arrows indicate di rect ion of dependency (who
is dependent on whom). We used a construct of arrowheads only to indicate a source which could
be dependent on all objects or a sink which all objects could depend on. Mainly, thisjust kept the
diagram cleaner. This kind of diagram is based on DDependency Diagrams, which look almost identi-
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calto a Semantic Net (see Fig.10) without the description on the arrows. Early in the design process,
control (via calls) arc not known and this kind of diagram helps to start establishing hicrarchy.

(CASSIN] AACSFLIGHT SOFTWARE ARCHITECTURE CRAV/CASSINAACS FLIGHT SOFTWARLE ARCHITECTUIRE
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Fig. 13 ) Vig. 14
Starting at the top, wc have the external operating s ystem (the real time operating system, RTX, for
the 1750A provided by *1'1 .ID, our cross compiler vendor). The operating system links to the flight
software exccutive as a result of an interrupt or during system startup.

The Flight Software Fxecutive object services interrupts, handles timing services, schedules all
exccut ion and performs tasking. It is the only interface to the 1750A (via the operating system). The
Flight Software Exccutive initiates a procedure in each object in turn when it is scheduled to exccute.

Messages to the Command and DData Subsystem (CDS) may be created by any of the other objects
but certainly by Telemetry, which can fetch telemetry data from any other object. Message packets
arc created and sent to the CDS (and perhaps on to storage in Solid State Memory or to the ground
system) by initiating the CDS Bus Interface object which manages the bus protocol to the CDS
(spacecraft) Bus.

Messages from CDS are periodically picked up from the CDDS Bus Interface object and checked for
validity. The Messages from CDS object then notifies the Command Handler that it has a command
10 process.

Faults may be raised and sent to the Fault Analyzer. Fault Analyzer will determine whether to kick
off a¥ault Recovery or just record the fault. Fault Recovery may involve a complex set of commands
be issued which take priority over any commands from CDS.

The Command Handler determines which commands have priority, in the case of a conflict, whether
the command is valid in the current software mode, and what actions are necessary to accomplish
acommand. Commands may be passed to the hardware Configuration Manager or the Mode Com-
mander (software configuration manager) for execution.

The Configuration Manager maintains the status of the AACS hardware. Status such as In Use, Pow-
cred On, Ready, and Failed arc kept for each device as well as the addressing path (e.g., 10 Bus A,
10U B, Elcctronics A).
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The Mode Commander maintains the software configuration and allowable changes in the software
configuration(mode changes). Scc Fig. 5{or the modes and allowable transitions. The Mode Com-
mander sets goals for Attitude Control and manages the states of Attitude Determination,

Attitude Control is a composite object comprised of the Attitude Commander, Delta V (velocity)
Control, Attitude Controller, and Inertial Vector Propagator. Plans for control, how the plans are to
be carried out, and plan implementation (via 1 lardware Managers) are al done by the Attitude Con-
trol. Scc Fig. 15 for the expanded detail. }ig.15 portrays the next level (1.evell) of architecture
and at this level we have shown the actual control (via calls) and added the direction of data flow
in the form of small arrows next to the control arr ows.

ASSINI AACS F1IGHT SOFI'WARE ARCHITECTURE
LLEVEL 1- CONTROL AL GORITIIMS

! ModeCommander '
e -

Attitude
Control

Attitude
Det i

AtitudeCommande AtetCommande

Attitude Contiole 1

(Acu]rmmuer‘D PMS Mpr ) Ch iAMps )

T

1 L—»——

SunSensorMpr ’ SKU My '

Ig. 15
Attitude Determination is a composite object comprised of the Attitude Determination Commander,
the Attitude Estimator, and the Star 1D (Identifier). Attitude Determination produces an estimate of
current attitude, compares the attitude with the desired attitude and produces an attitude error by ex-
changing information with Attitude Control (attitude goals arc achicved by this process of cycling
between Attitude Determination and Attitude Control). Attitude Determination bases its estimates
on data received from the hardware sensors (via the Hardware Managers).

The Constraint Monitor constantly checks both the estimated and desired attitudes for violations of
forbidden spacccraft attitudes such as staring at the sun with the cameras or prolonged exposure of
the instrument radiators to the sun.

Hardware Managers IS a composite object and its expanded detail can be seenin Fig.15. Fachman-
ager knows how to command a specific hardware unit and creates command packets for transmission
by the AACS Bus Manager. A 1 lardwarec Manager also performs data conversion and compensat ion.

T'here ar ¢ three bus interface managers, shown as the CDS Bus Interface and the composite object
- Bus Interfaces: P1U, 10U. The Pixel Interface is via the Pixel Intcl’face Unit (PI1U). The AACS
Bus Interface is viathe Bus Controller Input/Output Unit (10U).
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The AACS Bus Manager takes packets from the hardware managers and prepares  transmission
packets for the bus. 11 handles putting packets in and taking packets out of the memory shared with
the Bus Controller as well as servicing the handshake interrupts. Reply packets from the hardware
arc distributed to the individual hardware managers.

The Pixel Interface Manager sets up the Pixel Interface Unit (PIU) with an address where pixel data
will be stored, enables the PIU to write to memory, and services transmission error interrupts. (Al-

though the Star Tracker is commanded via the AACS Bus, output data from the Star "Iracker is sent

to memory viathe Pixel interface).

The CDSBus Manager puts transmission packets in the memory shared with the Bus Interface Unit

hardware ready for pickup by the CDS and removes transmission packets sent by CI1)S from the
sharcd memory. It sets up and maintains the. protocol to the Bus Interface Unit and handles the hand-

shake interrupts.

All of the objects are capable of detecting crrors or faults which are specific to their own specialized
knowledge and raising those faults to the Fault Analyzer. All of the objects also generate telemetry
data which is picked up by Telemetry.

Fig. 16 shows the 1.evel 1 architecture prior to deletion of CRAY and Cassini redesign. Note that
Articulation Control has been removed (only Engine Gimbal articulation remains and is now part
of Attitude Control).
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Fig. 16
The following table lists the criteria used for each of the objects fi om the six approachs previous] y
described. Expanded explanations are as follows:

Context, Noun: originally derived from the Context Diagram, later included in requirements.

Noun, Work Unit: originally derived from experience, including prototyping, asto what work units
arc most useful, later included in requitements.
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meetings, later verified as a uscful work umt.

Context, Work Unit: originally derived from the Context Diagram, later verified as a useful work
unit.

Noun, Work Unit: originally identified as a useful work unit, later included in requircments.

Noun, Abstraction - brainstorming: originally identified during our architecture brainstorming
meetings, later included in requirements.

ORIJECT Selection Explanation
Criteria

1. Accelerometer Manager 1&2 Context, Noun
2. Attitude Commander I 2&5 |Noun. Work unit
3. Attitude Controller | 2&S Noun, Work unit
4. Attitude. Determination Commander 2&5 Noun. Work unit
5. Attitude Estimator 2&S5 Noun, Work unit
6.11111 Manaper 1&2 Context, Noun
7. Command Handler 5&6 Work WHtit, Apstraction - brainstorming,
8. Configuration Manager 5&6 Work umit, AAbstiaction - brainstorming
9. Constraint Monitor l S5&6 | Work unit, Abstraction - brainstorming,
10. Delta V Contiol 2&5 Noun, Work unit
11. EGAManaget 1 &2 Context, Noun
12, Fault Anatyzer 5&6 Work unit, Aksiragtian - brainstorming,
13. Fault Recovery 5&6 Work writt, . Abstraction - brainstorming-
14. Flight Software Executive | 1&S ] Context, Work unit
15. Frame Manager 5&6 I Work unit, Abstraction - brainstorming,
16. Gyro Managg:t 1&2 Context, Noun
17_.- Inertial Vector Propagator 2&5 Noun, Work unit
18, 10U Manager 1&2 Context, Noun
19. Messages From CDS 1&5 Context, Work unit
20. Messages ToCDS 1&S Context, Work unit
2 J. Mode Commander 5&6 Work unit, Abstraction - brainstorming,
22. PIUMansper 1 &2 Context , Noun
23. PMS Manager 1&2 Context, Noun
24. PROM Conti 01 5&6 Work unit, Abstiaction - brainstorming,
25. RWA Manager 1&2 Coute xt, Noun
26. SRU Manager 1&2 Context, Noun
27. Star 1D 2&S Noun, Work unit
28. Sun Sensot Manager 1 &2 Context, N oun -
;9. Telemetry Manager 2&6 Noun, Abstiaction - brainstorming,
;). Utility (Global) Functions 5&6 Work unit, Abstraction - brainstorming,

Design Representation

'The detail of each object’s design is portrayed with at least an Object Diagram, a State Transition
Diagram, and a Booch Diagram. The Object Diagram adds detail to the l.evel 0 and 1 Architecture
Diagrams in the form of named events and data which pass between the object of focus and other
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objects connected to it. Adding this detail in a higher level of diagram would be impract ical for draw-
ing purposes, plus areader can track through the design from higher to lower levels and scc an in-
creasing amount of detail. I'ig. 17, an example Objcct Diagram from the second prototype, is a good
way of showing the ideas without the complexity of the full blown application.

Object Diagrarn
Attitude Commander (ACM)

@ T Aige
Fatimator
O "

Sy _DSe
e i 7
Fught Sofiwawe - e
Faccuive
FSx
el Il nai_bans,
oS 4,
)
) :
i

Se! A0 Al And_feale
(allinle, rats)

Fig. 17

State "Transition Diagrams were very useful duiing the Requirements brainstorming phasc. The State
Transition Diagram portrays the internals of an object - its states, events which cause transitions
between states, and the processing which occurs during a transition and within a state. Concurrency
can also be portrayed as can be seen in Fig.18, an example State Transition Diagram (or Statechart)
from the second protot ypc, where aprocess wWhich ret ums at t it ude and rate runs concurrentl y with
the process which computes the estimated attitude and rate (concurrency is indicated by the dashed
line running through the large supcrstate).

‘The hooch Diagram portrays the actual implementat ion packaging of the design in the form of Ada
Packages. The packages with the hcav y borders are the packages which make up the object of focus.
Dependencies on the packages of other objects, cither from the Package Spec or Package Bod y (indi-
cated by the Bor S), arc represented by arrows and the packages themselves, Only the external pack-
ages referenced (via Ada with) are drawn, not all the packages of a referenced object, This promotes
tracking and diagraming. In the example Booth Diagram from the second prototype, Iig. 19, no-
tice that visible procedures and types are shown (but not all are shown, wc opted not to show the
global procedures and types - math routines and types used by three or more objects - as they are
too voluminous). Visible data can also be portrayed.

Any additional drawings (e.g., ata Flow Diagrams) which aided the developer in understanding
the problem or describing it to others were encouraged but not required.

During the Prototype, we created models of our deliverable products (i. e., documents) and guide-
lines for our development procedures (Design, Code, Test, Configurat ion Control, Problem Report-
ing, Reviews). The guidelines include templates for the textual material (see Fig.20), diagrams, and
code format.
Tool Usage

We found that tools in the form of diagrams were very useful in documenting theresults of our and y-
sisand in providing the media used in brainstorming how things should work.
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Fig. 19
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Object Overview
Object Name. (Object Acronym)

Description: <In this section describe “what” functions this object
performs, NOT “how” it is done.>

<Thisis the component for a continuation paragraph>

Inputs:
From <Object Acrony ni> <Actunl Event/F unction Call as desaribed In the
Ovject Dragrams
f xampls
From ATE Gel Atbtide_ And_RatelAtitude
Quaterion, Rate Vedtur]
Fsx Inftialize
ACM Done

Processing: <Inthis section desciibe “how” the. functions described
inthe description sect ion are performed>

Outputs:
To <Objsol Acronym> <Adual Event/Function Call as dessribed in the
Otjject Dagram.-
Exanyle
To: THR RCS. Thuste(Thruster_ Vector)

ATt Done

Fig. 20 Textual Templates

20

Object Descr iption
Object Name (Object Acionym)

description:

Description goes here.>

ublic Operations:
‘xamyde

3Bi_Math Conjuga ty

‘ublic Attributes:
xa“ vo
iBL_Cons tants Kilo

standard Operations:

xamyie list
iBL_Math inibalize
description: Cloars 8l acoumulators to the standard stale
assumptions: must be executed before any other routine in
this package is called
inputs: none
processing: all storage in the package is set to zet oes .
outpuls: none
dperations:
xanyde list

at_Math.~ Binary operation (overloaded)

description: VECTOR32. 4. TYPE x VE G TOR. 32 4 TYPE -> VEC-
10n32. 4_TvPE; Subl ract s the arguments com
ponent by component

assumptions. none

inputs. any value

processing: constructsanewvalue of the same DPC by
component- by- component subtr action

outputs; returnsthe consty ucted value
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Integrated automated development tools to help in creating our drawings and maintaining the dictio-
nary of entitiesin the drawings appear to be too immature for object oriented development, too in-
flexible to be able to adapt to our particular approach, and overkill for aproject of this size. We, there-
fore, used cither Maclraw or Interleaf for our diagrams and Interleaf for producing our textual
material and publishing our documents. Any MacDraw diagrams were filtered and imported to In-
terlcal’ when the documents were created. The Statemate tool from 1 logix comes the closest to doing
our statecharts (State Transition Diagrams) and might be looked at both for methodology and tool
support (wc no longer had funds for tools of this scale when wc rcalized the possible benefits).

Wc are considering a IData Basc tool for our Data Dictionary and Requirements Irace Matrix. Wc
arc currently doing the Requirements Trace Matrix on Interleaf.

LESSONS LEARNED / SUMMARY

Prototyping al the people interfaces, software products, and development processes that schedule
and budget allows, is time and cffort well spent.

Don’tunderestimate the need for aprotot ypc effort to work through the ramificat ions of an Object
Oriented approach and get experience with the process. Grouping data with the only procedures
which are allowed to act on that data seems like a simple concept but the resulting changes in the
software development paradigm are abundant, Although we actually did two prototypes, the first
was dedicated to deciding on the development paradigm (Object Osiented obvious] y won) and work-
ing through that paradigm with all the groups involved in the software development, not just the
1 light Soft ware team. The second protot ypc was an extension of the first where the Ilight Software
team concentrated on defining, refining, and gaining experience with the details of the process. Re-
member too that the prototype is a very uscf ul tool for wringing out test bed simulations,

State Transition Diagrams are invaluable as a tool fOr driving out both Tcquitements and design de-
tails. Wc highly recommend the usc, development and maintenance of these diagrams during the
entire soft ware development process. A pictoral representat ion of what needs to occur in a system
and what can cause those things to occur, aids the discussion, understanding, and transmission of
requirements and design details.

That data in an object may only be changed by the object (no data is shared in common) is the most
important premise of an Object Oriented soft ware development approach. Objects may be chosen
in several ways, just try to make the interfaces as simple and few as feasible and place data and pro-
cesses in the objects that have the most knowledge about them. The independent objects, which re-
sultfrom these few simple premises, accomodate even major system changes and can be rcused.

With all the up front preparation, it might be difficult to separate the contribution of the Object Ori-
ented paradigm from the contributions of the other newly adopted tools and techiques, were it not
for the significant redesign of Cassini and deletion of CRAF. Software development proceeded with-
out significant impact or interruption during al that turmoil and this can be largely attributed to the
object oriented architecture.

Our experiences to date indicate that the Object Onented approach to developing flight control soft-
warc is very promising. Wc will continue to assess the process through the implementat ion and test
phases.
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